Selected Solutions Manual

 forIntroduction to Partial Differential Equations
by
Peter J. Olver

Undergraduate Texts in Mathematics
Springer, 2014
ISBN 978-3-319-02098-3
(c) 2014 Peter J. Olver

Table of Contents

Chapter 1. What Are Partial Differential Equations? 1
Chapter 2. Linear and Nonlinear Waves 3
Chapter 3. Fourier Series 13
Chapter 4. Separation of Variables 27
Chapter 5. Finite Differences 41
Chapter 6. Generalized Functions and Green's Functions 57
Chapter 7. Fourier Transforms 69
Chapter 8. Linear and Nonlinear Evolution Equations 75
Chapter 9. A General Framework for
Linear Partial Differential Equations 85
Chapter 10. Finite Elements and Weak Solutions 97
Chapter 11. Dynamics of Planar Media 107
Chapter 12. Partial Differential Equations in Space 123
(c) 2014 Peter J. Olver

Selected Solutions to Chapter 1: What Are Partial Differential Equations?

1.1. (a) Ordinary differential equation, equilibrium, order $=1$;
(c) partial differential equation, dynamic, order $=2$;
(e) partial differential equation, equilibrium, order $=2$;
(g) partial differential equation, equilibrium, order $=2$;
(i) partial differential equation, dynamic, order $=3$;
(k) partial differential equation, dynamic, order $=4$.
1.2. (a) (i) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$,
(ii) $u_{x x}+u_{y y}=0$;
(c) (i) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$,
(ii) $u_{t}=u_{x x}+u_{y y}$;
1.4. (b) independent variables: x, y; dependent variables: u, v; order $=2$;
(d) independent variables: t, x, y; dependent variables: u, v, p; order $=1$.
1.5.
(a) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{x} \cos y-e^{x} \cos y=0 ;$ defined and C^{∞} on all of \mathbb{R}^{2}.
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6 x-6 x=0$; defined and C^{∞} on all of \mathbb{R}^{2}.
(d) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0$; defined and C^{∞} on $\mathbb{R}^{2} \backslash\{0\}$.
1.7. $u=\log \left[c(x-a)^{2}+c(y-b)^{2}\right]$, for a, b, c arbitrary constants.
1.8. (a) $c_{0}+c_{1} x+c_{2} y+c_{3} z+c_{4}\left(x^{2}-y^{2}\right)+c_{5}\left(x^{2}-z^{2}\right)+c_{6} x y+c_{7} x z+c_{8} y z$, where c_{0}, \ldots, c_{8} are arbitrary constants.
1.10. (a) $\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=8-8=0 ; \quad$ (c) $\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=-4 \sin 2 t \cos x+4 \sin 2 t \cos x=0$.
1.11. (a) $c_{0}+c_{1} t+c_{2} x+c_{3}\left(t^{2}+x^{2}\right)+c_{4} t x$, where c_{0}, \ldots, c_{4} are arbitrary constants.
1.13. $u=a+\frac{b}{r}=a+\frac{b}{\sqrt{x^{2}+y^{2}+z^{2}}}$, where a, b are arbitrary constants.
1.15. Example: (b) $u_{x}^{2}+u_{y}^{2}+u^{2}=0-$ the only real solution is $u \equiv 0$.
1.16. When $(x, y) \neq(0,0)$, a direct computation shows that

$$
\frac{\partial u}{\partial x}=\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial u}{\partial y}=\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

while, from the definition of partial derivative,

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{u(h, 0)-u(0,0)}{h}=0, \quad \frac{\partial u}{\partial y}(0,0)=\lim _{k \rightarrow 0} \frac{u(0, k)-u(0,0)}{k}=0
$$

Thus,

$$
\frac{\partial^{2} u}{\partial x \partial y}(0,0)=\lim _{h \rightarrow 0} \frac{u_{y}(h, 0)-u_{y}(0,0)}{h}=1, \quad \frac{\partial^{2} u}{\partial y \partial x}(0,0)=\lim _{k \rightarrow 0} \frac{u_{x}(0, k)-u_{x}(0,0)}{k}=-1 .
$$

This does not contradict the equality of mixed partials because the theorem requires continuity, while

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{x^{6}+9 x^{4} y^{2}+9 x^{2} y^{4}-y^{4}}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0)
$$

is not continuous at $(x, y)=(0,0)$. Indeed,

$$
\lim _{h \rightarrow 0} \frac{\partial^{2} u}{\partial x \partial y}(h, 0)=1 \neq-1=\lim _{k \rightarrow 0} \frac{\partial^{2} u}{\partial x \partial y}(0, k) .
$$

1.17. (a) homogeneous linear; (d) nonlinear; (f) inhomogeneous linear.
1.19. (a) (i) $\frac{\partial^{2} u}{\partial t^{2}}=-4 \cos (x-2 t)=4 \frac{\partial^{2} u}{\partial x^{2}}$.
1.20. (a) $\cos (x-2 t)+\frac{1}{4} \cos x-5 \sin (x-2 t)-\frac{5}{4} \sin x$.
1.21. (a) $\partial_{x}[c f+d g]=\frac{\partial}{\partial x}[c f(x)+d g(x)]=c \frac{\partial f}{\partial x}+d \frac{\partial g}{\partial x}=c \partial_{x}[f]+d \partial_{x}[g]$. The same proof works for ∂_{y}. (b) Linearity requires $d=0$, while a, b, c can be arbitrary functions of x, y.
1.23. Using standard vector calculus identities:
(b) $\nabla \times(\mathbf{f}+\mathbf{g})=\nabla \times \mathbf{f}+\nabla \times \mathbf{g}, \nabla \times(c \mathbf{f})=c \nabla \times \mathbf{f}$.
1.24. (a) $(L-M)[u+v]=L[u+v]-M[u+v]=L[u]+M[u]-L[v]-M[v]$

$$
=(L-M)[u]+(L-M)[v],
$$

$$
(L-M)[c u]=L[c u]-M[c u]=c L[u]-c M[u]=c(L-M)[u] ;
$$

(c) $(f L)[u+v]=f L[u+v]=f L[u]+f L[v]=(f L)[u]+(f L)[v]$,

$$
(f L)[c u]=f L[c u]=f c L[u]=c(f L)[u] .
$$

1.27. (b) $u(x)=\frac{1}{6} e^{x} \sin x+c_{1} e^{2 x / 5} \cos \frac{4}{5} x+c_{2} e^{2 x / 5} \sin \frac{4}{5} x$.
1.28. (b) $u(x)=-\frac{1}{9} x-\frac{1}{10} \sin x+c_{1} e^{3 x}+c_{2} e^{-3 x}$,
(d) $u(x)=\frac{1}{6} x e^{x}-\frac{1}{18} e^{x}+\frac{1}{4} e^{-x}+c_{1} e^{x}+c_{2} e^{-2 x}$.

Selected Solutions to Chapter 2: Linear and Nonlinear Waves

2.1.1. $u(t, x)=t x+f(x)$, where f is an arbitrary C^{1} function.
2.1.3. (a) $u(t, x)=f(t) ; \quad$ (c) $u(t, x)=t x-\frac{1}{2} t^{2}+f(x) ; \quad$ (e) $u(t, x)=e^{-t x} f(t)$.
2.1.5. $u(t, x, y)=f(x, y)$ where f is an arbitrary C^{1} function of two variables. This is valid provided each slice $D_{a, b}=D \cap\{(t, a, b) \mid t \in \mathbb{R}\}$, for fixed $(a, b) \in \mathbb{R}^{2}$, is either empty or a connected interval.
\bigcirc 2.1.8. (a) The partial differential equation is really an autonomous first-order ordinary differential equation in t, with x as a parameter. Solving this ordinary differential equation by standard methods, $[\mathbf{2 0}, \mathbf{2 3}]$, the solution to the initial value problem is
$u(t, x)=\frac{f(x)}{t f(x)+1}$. Thus, if $f(x)>0$, then the denominator does not vanish for $t \geq 0$, and, moreover, goes to ∞ as $t \rightarrow \infty$. Therefore, $u(t, x) \rightarrow 0$ as $t \rightarrow \infty$.
(b) If $f(x)<0$, then the denominator in the preceding solution formula vanishes when $t=\tau=-1 / f(x)$. Moreover, for $t<\tau$, the numerator is negative, while the denominator is positive, and so $\lim _{t \rightarrow \tau^{-}} u(t, x)=-\infty$.
(c) The solution is defined for $0<t<t_{\star}$, where $t_{\star}=-1 / \min f(x)$. In particular, if $\min f(x)=-\infty$, then the solution is not defined for all $x \in \mathbb{R}$ for any $t>0$.
$\diamond 2.1 .9$. It suffices to show that, given two points $\left(t_{1}, x\right),\left(t_{2}, x\right) \in D$, then $u\left(t_{1}, x\right)=u\left(t_{2}, x\right)$. By the assumption, $(t, x) \in D$ for $t_{1} \leq t \leq t_{2}$, and so $u(t, x)$ is defined and continuously differentiable at such points. Thus, by the Fundamental Theorem of Calculus,

$$
u\left(t_{2}, x\right)-u\left(t_{1}, x\right)=\int_{t_{1}}^{t_{2}} \frac{\partial u}{\partial t}(s, x) d s=0
$$

2.2.2. (a) $u(t, x)=e^{-(x+3 t)^{2}}$

(c) $u(t, x)=e^{-t / 2} \tan ^{-1}(x-t)$

$t=1$

$t=2$

$t=3$
(c) 2014 Peter J. Olver
2.2.3.
(b) Characteristic lines: $x=5 t+c$; general solution: $u(t, x)=f(x-5 t)$;

(d) Characteristic lines: $x=-4 t+c$; general solution: $u(t, x)=e^{-t} f(x+4 t)$;

2.2.4. $u(t, x)=t+e^{-(x-2 t)^{2}}$.
$\diamond 2.2 .6$. By the chain rule

$$
\frac{\partial v}{\partial t}(t, x)=\frac{\partial u}{\partial t}\left(t-t_{0}, x\right), \quad \frac{\partial v}{\partial x}(t, x)=\frac{\partial u}{\partial x}\left(t-t_{0}, x\right),
$$

and hence

$$
\frac{\partial v}{\partial t}(t, x)+c \frac{\partial v}{\partial x}(t, x)=\frac{\partial u}{\partial t}\left(t-t_{0}, x\right)+c \frac{\partial u}{\partial x}\left(t-t_{0}, x\right)=0 .
$$

Moreover, $v\left(t_{0}, x\right)=u(0, x)=f(x)$.
Q.E.D.
2.2.9. (a) $|u(t, x)|=|f(x-c t)| e^{-a t} \leq M e^{-a t} \rightarrow 0$ as $t \rightarrow \infty$ since $a>0$.
(b) For example, if $c \geq a$, then the solution $u(t, x)=e^{(c-a) t-x} \nrightarrow 0$ as $t \rightarrow \infty$.
\bigcirc 2.2.11. (a) $u(t, x)=\frac{1}{t+h(x-t)}$, where $h(\xi)$ is an arbitrary C^{1} function.
(b) The solution to the initial value problem is

$$
u(t, x)=\frac{f(x-t)}{1+t f(x-t)}
$$

If $f(x) \geq 0$, then the denominator does not vanish for $t \geq 0$, and hence the solution exists for $t>0$. Moreover, for fixed $t>0$, the function $g(y)=\frac{y}{1+t y}$ is strictly increasing for $y \geq 0$. Therefore, $0 \leq u(t, x) \leq \frac{M}{1+M t} \longrightarrow 0$ as $t \rightarrow \infty$.
(c) Using the preceding solution formula, if $f(x)<0$, then, at the point $x_{\star}=x-1 / f(x)$, the solution $u\left(t, x_{\star}\right) \rightarrow-\infty$ as $t \rightarrow \tau=-1 / f(x)$.
(d) If $m=\min f(x)<0$, then, by part (c), the minimal blow-up time is $\tau_{\star}=-1 / m$.
2.2.14. (a) $u(t, x)=\left\{\begin{array}{ll}f(x-c t), & x \geq c t, \\ g(t-x / c), & x \leq c t,\end{array}\right.$ defines a classical C^{1} solution provided the compatibility conditions $g(0)=f(0), g^{\prime}(0)=-c f(0)$, hold.
(b) The initial condition affects the solution for $x \geq c t$, whereas the boundary condition affects the solution for $x \leq c t$. Apart from the compatibility condition along the characteristic line $x=c t$, they do not affect each other.
2.2.17. (a) $u(t, x)=\frac{1}{\left(x e^{t}\right)^{2}+1}=\frac{e^{-2 t}}{x^{2}+e^{-2 t}}$.
(b)

$$
t=2:
$$

$$
t=3:
$$

(c) The limit is discontinuous: $\lim _{t \rightarrow \infty} u(t, x)= \begin{cases}1, & x=0, \\ 0, & \text { otherwise } .\end{cases}$
2.2.18. (a) $\lim _{t \rightarrow \infty} u(t, x)= \begin{cases}0, & x<-1, \\ f(-1), & x=-1, \\ f(1), & x>-1 .\end{cases}$
2.2.20. (a) The characteristic curves are given by $x=\tan (t+k)$ for $k \in \mathbb{R}$.

