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Selected Solutions to
Chapter 1: What Are Partial Differential Equations?

1.1. (a) Ordinary differential equation, equilibrium, order = 1;

c) partial differential equation, dynamic, order = 2;

g) partial differential equation, equilibrium, order = 2;

- (
(c)
(e) partial differential equation, equilibrium, order = 2;
(8)
(i) partial differential equation, dynamic, order = 3;
(k) partial differential equation, dynamic, order = 4.

L P 9% g L ou  0%u  0*u .
1.2. (a) (7) @—l—a—gﬂ =0, (i) uy,+u,, =0;(c) (i) FTi W+8—y2’ (i8) wp = Ugy Uy

1.4. (b) independent variables: z,y; dependent variables: u,v; order = 2;

(d) independent variables: t,z,y; dependent variables: wu, v, p; order = 1.

1.5.
w P P
0x2 = 0y?
(c) Ou + Pu _ 62 — 62 = 0; defined and C* on all of R?
0x?2  oy? - '
(d) 0%y + 0%y _ 2y% — 222 + 222 — 2y
0z T o2 (22 +12)2 " (22 +42)

=e”cosy — e¥ cosy = 0; defined and C*° on all of R2.

2
5 = 0; defined and C* on R? \ {0}.

1.7. u=log [c (x—a)’+c(y— b)Q], for a, b, ¢ arbitrary constants.

1.8.(a) ¢y + i+ coy +cyz + e (@ —y?) + 05(x2 — 25+ cgry + crrz + gy 2,

where c, ..., cg are arbitrary constants.
2 2 2 2
0]
1.10. (a) ng - 48—3:1; =8-8=0; (c) % —4 % = —4sin2tcosxz + 4sin2tcosz = 0.
L11. (a) ¢y + ¢yt + cox + c3(t* + x2) + c4tx, where cg,...,c, are arbitrary constants.

b
NCZ +y2 + 22

1.15. Example: (b) u? + uz +u? =0 — the only real solution is u = 0.

b .
1.13. u=a+ ~=a + , where a, b are arbitrary constants.
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2 Chapter 1: Selected Solutions

1.16. When (z,y) # (0,0), a direct computation shows that

ou _ y(at +4a”y® —yh) ou _ x(at —42%y —yh)
or (z2 + y2)2 ’ oy (z? 4+ y2)? ’
while, from the definition of partial derivative,
ou . u(h,0) —u(0,0) ou . u(0,k) —u(0,0)
oz (0,0) B h 0 dy (0,0) [y k 0
Thus,
d%u u, (h,0) —u, (0,0) 0%u u_(0,k) —u_(0,0)
= 1 y Yy =1 = i r\ T\ - 1.
ooy (00 = img h  ayar (00 = Jimg k

This does not contradict the equality of mixed partials because the theorem requires
continuity, while

0%u _ 0%u _ 2 +92%y% + 922yt — ot (@,9) £ (0,0)
0xdy Oxdy (z2 + y2)3 ’ Y T
is not continuous at (x,y) = (0,0). Indeed,
0%u *u
li h,0)=1#-1= 1 0,k
o dz dy (h,0) =17 k30 8m8y( )

1.17. (a) homogeneous linear; (d) nonlinear; (f) inhomogeneous linear.

L 0%u 82u
1.20. (a) cos(z — 2t) + % cosz — 5sin(z — 2t) — Ssina.
0 of 99 _
1.21. (a) O [cf+dg] = p [cf(x)+dg(x)] = o +d—= B cO,[f]+dd,[g]. The same proof

works for 8y. (b) Linearity requires d = 0, while a, b, ¢ can be arbitrary functions of z,y.
1.23. Using standard vector calculus identities:
(b) Vx(f+g)=Vxf+Vxg, Vx(cf)=cVxTf.
1.24. (a) (L— M)[u+v]=Llu+v]— M[u+v]= L[u] + M[u] — L[v] — M[v]
= (L= M)[u] + (L — M)[v],
(L — M)[cu] = Llcu] — M[cu] =cL[u] —cM[u] = c(L — M)[ul;

() (fD)[u+v]=fLlutv]=fLlu]+fLlv]=(fL)[u] + (fL)[v],
(fL)[CU]ZfL[CU]chL[ | =c(fL)[u].

2z/5 2z/5

mm—i-ce cos—a:—i—ce 51n5x

T — liosinazjtcle —i—ch_?’x,

1

(d) u(z) = tze” — ke +1e "4 e +ege 27
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Selected Solutions to

Chapter 2: Linear and Nonlinear Waves

2.1.1. u(t,x) =tz + f(x), where f is an arbitrary C! function.
21.3.(a) ult,2) = f(1); () u(t,w) = to— 262+ f(2); (e) ult,a) = e f(t).

2.1.5. u(t,z,y) = f(x,y) where f is an arbitrary C! function of two variables. This is valid pro-
vided each slice D, , = D N {(¢,a,b) |t € R}, for fixed (a,b) € R2, is either empty or a
connected interval.

© 2.1.8. (a) The partial differential equation is really an autonomous first-order ordinary differen-
tial equation in ¢, with z as a parameter. Solving this ordinary differential equation by
standard methods, [20, 23], the solution to the initial value problem is

u(t,z) = tf{ag% . Thus, if f(x) > 0, then the denominator does not vanish for ¢ > 0,

and, moreover, goes to oo as t — oo. Therefore, u(t,z) — 0 as t — oo.

(b) If f(z) < 0, then the denominator in the preceding solution formula vanishes when
t =7 = —1/f(z). Moreover, for t < 7, the numerator is negative, while the denominator
is positive, and so lim wu(t,x) = —oo.
t— 717"

(c) The solution is defined for 0 < ¢t < t,, where ¢t, = —1/min f(x). In particular, if
min f(z) = — oo, then the solution is not defined for all x € R for any t > 0.

¢ 2.1.9. It suffices to show that, given two points (¢;,x), (t9,2) € D, then u(t;,z) = u(ty,z). By
the assumption, (t,z) € D for t; < t < t5, and so u(t, x) is defined and continuously
differentiable at such points. Thus, by the Fundamental Theorem of Calculus,
t2 Ju

u(ty,x) —u(ty,x) = /t1 En (s,x)ds = 0. Q.E.D.

2.2.2. (a) u(t,z) = e~ (@t31)°

(c) u(t,z) =e Y tan" (z — t)

t=1 t=2 t=3

(©) 2014 Peter J. Olver



4 Chapter 2: Selected Solutions

2.2.3.
(b) Characteristic lines: = 5t 4 ¢; general solution: u(t,z) = f(z — 5t);

x /t
i

(d) Characteristic lines: = —4t + ¢; general solution: u(t,z) = e~ f(x + 4t);

I

T

2.24. u(t,x) =t+ e~ (@=20)%,
¢ 2.2.6. By the chain rule

ov ou ov ou
8t(7x) 8t( Oax)a 833(7x) 693( 0,.’E),
and hence
v v ou ou
Z(t,x) == (t—t Lt —ty,3) =0.
8t( )+Cam(7x) 8t( O’x)+cam( 0733)
Moreover, v(ty, ) = u(0,2) = f(x). Q.E.D.
2.29. (a) |u(t,z)| =|f(x—ct)|e " < Me % — 0 ast — oo since a > 0.
(b) For example, if ¢ > a, then the solution u(t,z) = elc=t=2 /3 0 as t — oco.
1
© 2.2.11. (a) u(t,z) = oy where h(€) is an arbitrary C! function.
(b) The solution to the initial value problem is
flz—1t)
tg)=-—JL 7Y
wh) = T e oD
If f(x) > 0, then the denominator does not vanish for ¢ > 0, and hence the solution ex-
ists for t > 0. Moreover, for fixed ¢ > 0, the function g(y) = 1 ft is strictly increasing
M Y
> 0. < < — .
for y > 0. Therefore, 0 < u(t,z) < T it —0ast— o0
(c) Using the preceding solution formula, if f(x) < 0, then, at the point z, = x — 1/f(z),
the solution u(t,z,) - —cc ast — 7= —1/f(x).

(d) If m = min f(z) < 0, then, by part (c¢), the minimal blow-up time is 7, = —1/m.

(©) 2014 Peter J. Olver



Chapter 2: Selected Solutions 5

flx —ct), xz>ct,
2.2.14. (a) u(t,x) = {

g(t—=x/c), x<ect,
compatibility conditions g(0) = f(0), ¢'(0) = —c f(0), hold.

defines a classical C' solution provided the

(b) The initial condition affects the solution for > ct, whereas the boundary condition
affects the solution for x < ct. Apart from the compatibility condition along the charac-
teristic line x = ct, they do not affect each other.

1 e—2t

2.2.17. (a) u(t,z) = @z 11 = Z oot

t=0: t=1
t=2 t=3
N
1, z =0,
(¢) The limit is discontinuous: lim wu(t,z) = { .
t— oo 0, otherwise.
0, T < —1,
2.2.18. (a) lim w(t,z) =< f(-1), == -1,
t— o0

f, x>-1.

2.2.20. (a) The characteristic curves are given by x = tan(t + k) for k € R.

W
f
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