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Selected Solutions to

Chapter 1: What Are Partial Differential Equations?

1.1. (a) Ordinary differential equation, equilibrium, order = 1;

(c) partial differential equation, dynamic, order = 2;

(e) partial differential equation, equilibrium, order = 2;

(g) partial differential equation, equilibrium, order = 2;

(i) partial differential equation, dynamic, order = 3;

(k) partial differential equation, dynamic, order = 4.

1.2. (a) (i)
∂2u

∂x2
+
∂2u

∂y2
= 0, (ii) uxx+uyy = 0; (c) (i)

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (ii) ut = uxx+uyy;

1.4. (b) independent variables: x, y; dependent variables: u, v; order = 2;

(d) independent variables: t, x, y; dependent variables: u, v, p; order = 1.

1.5.

(a)
∂2u

∂x2
+
∂2u

∂y2
= ex cos y − ex cos y = 0; defined and C∞ on all of R2.

(c)
∂2u

∂x2
+
∂2u

∂y2
= 6x− 6x = 0; defined and C∞ on all of R2.

(d)
∂2u

∂x2
+
∂2u

∂y2
=

2y2 − 2x2

(x2 + y2)2
+

2x2 − 2y2

(x2 + y2)2
= 0; defined and C∞ on R

2 \ {0}.

1.7. u = log
[
c(x− a)2 + c(y − b)2

]
, for a, b, c arbitrary constants.

1.8. (a) c0 + c1x+ c2y + c3z + c4(x
2 − y2) + c5(x

2 − z2) + c6xy + c7xz + c8yz,
where c0, . . . , c8 are arbitrary constants.

1.10. (a)
∂2u

∂t2
− 4

∂2u

∂x2
= 8− 8 = 0; (c)

∂2u

∂t2
− 4

∂2u

∂x2
= −4 sin 2 t cosx+ 4 sin 2 t cos x = 0.

1.11. (a) c0 + c1t+ c2x+ c3(t
2 + x2) + c4tx, where c0, . . . , c4 are arbitrary constants.

1.13. u = a+
b
r
= a+

b
√
x2 + y2 + z2

, where a, b are arbitrary constants.

1.15. Example: (b) u2x + u2y + u2 = 0 — the only real solution is u ≡ 0.
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2 Chapter 1: Selected Solutions

1.16. When (x, y) 6= (0, 0), a direct computation shows that

∂u

∂x
=
y (x4 + 4x2y2 − y4)

(x2 + y2)2
,

∂u

∂y
=
x(x4 − 4x2y2 − y4)

(x2 + y2)2
,

while, from the definition of partial derivative,

∂u

∂x
(0, 0) = lim

h→ 0

u(h, 0)− u(0, 0)

h
= 0,

∂u

∂y
(0, 0) = lim

k→ 0

u(0, k)− u(0, 0)

k
= 0.

Thus,

∂2u

∂x ∂y
(0, 0) = lim

h→ 0

uy(h, 0)− uy(0, 0)

h
= 1,

∂2u

∂y ∂x
(0, 0) = lim

k→ 0

ux(0, k)− ux(0, 0)

k
= −1.

This does not contradict the equality of mixed partials because the theorem requires
continuity, while

∂2u

∂x∂y
=

∂2u

∂x ∂y
=
x6 + 9x4y2 + 9x2y4 − y4

(x2 + y2)3
, (x, y) 6= (0, 0),

is not continuous at (x, y) = (0, 0). Indeed,

lim
h→ 0

∂2u

∂x∂y
(h, 0) = 1 6= −1 = lim

k→ 0

∂2u

∂x ∂y
(0, k).

1.17. (a) homogeneous linear; (d) nonlinear; (f ) inhomogeneous linear.

1.19. (a) (i)
∂2u

∂t2
= −4 cos(x− 2 t) = 4

∂2u

∂x2
.

1.20. (a) cos(x− 2 t) + 1
4 cos x− 5 sin(x− 2 t)− 5

4 sin x.

1.21. (a) ∂x[cf + dg ] =
∂

∂x
[cf(x) + dg(x) ] = c

∂f

∂x
+ d

∂g

∂x
= c∂x[f ] + d∂x[g ]. The same proof

works for ∂y. (b) Linearity requires d = 0, while a, b, c can be arbitrary functions of x, y.

1.23. Using standard vector calculus identities:

(b) ∇× (f + g) = ∇× f +∇× g, ∇× (c f) = c∇× f .

1.24. (a) (L−M)[u+ v ] = L[u+ v ]−M [u+ v ] = L[u ] +M [u ]− L[v ]−M [v ]

= (L−M)[u ] + (L−M)[v ],

(L−M)[cu ] = L[cu ]−M [cu ] = cL[u ]− cM [u ] = c(L−M)[u ];

(c) (f L)[u+ v ] = f L[u+ v ] = f L[u ] + f L[v ] = (f L)[u ] + (f L)[v ],

(f L)[cu ] = f L[cu ] = f cL[u ] = c(f L)[u ].

1.27. (b) u(x) = 1
6 e

x sin x+ c1 e
2x/5 cos 4

5 x+ c2 e
2x/5 sin 4

5 x.

1.28. (b) u(x) = − 1
9 x− 1

10 sin x+ c1 e
3x + c2 e

−3x,

(d) u(x) = 1
6 x e

x − 1
18 e

x + 1
4 e

−x + c1 e
x + c2 e

−2x.
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Selected Solutions to

Chapter 2: Linear and NonlinearWaves

2.1.1. u(t, x) = t x+ f(x), where f is an arbitrary C1 function.

2.1.3. (a) u(t, x) = f(t); (c) u(t, x) = tx − 1
2 t

2 + f(x); (e) u(t, x) = e−tx f(t).

2.1.5. u(t, x, y) = f(x, y) where f is an arbitrary C1 function of two variables. This is valid pro-
vided each slice Da,b = D ∩ { (t, a, b) | t ∈ R }, for fixed (a, b) ∈ R

2, is either empty or a
connected interval.

♥ 2.1.8. (a) The partial differential equation is really an autonomous first-order ordinary differen-
tial equation in t, with x as a parameter. Solving this ordinary differential equation by
standard methods, [20, 23], the solution to the initial value problem is

u(t, x) =
f(x)

tf(x) + 1
. Thus, if f(x) > 0, then the denominator does not vanish for t ≥ 0,

and, moreover, goes to ∞ as t→ ∞. Therefore, u(t, x) → 0 as t→ ∞.

(b) If f(x) < 0, then the denominator in the preceding solution formula vanishes when
t = τ = −1/f(x). Moreover, for t < τ , the numerator is negative, while the denominator
is positive, and so lim

t→ τ−

u(t, x) = −∞.

(c) The solution is defined for 0 < t < t⋆, where t⋆ = −1/min f(x). In particular, if
min f(x) = −∞, then the solution is not defined for all x ∈ R for any t > 0.

♦ 2.1.9. It suffices to show that, given two points (t1, x), (t2, x) ∈ D, then u(t1, x) = u(t2, x). By
the assumption, (t, x) ∈ D for t1 ≤ t ≤ t2, and so u(t, x) is defined and continuously
differentiable at such points. Thus, by the Fundamental Theorem of Calculus,

u(t2, x)− u(t1, x) =
∫ t2

t1

∂u

∂t
(s, x) ds = 0. Q .E .D.

2.2.2. (a) u(t, x) = e−(x+3 t)2

t = 1 t = 2 t = 3

(c) u(t, x) = e−t/2 tan−1(x− t)

t = 1 t = 2 t = 3
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4 Chapter 2: Selected Solutions

2.2.3.

(b) Characteristic lines: x = 5 t+ c; general solution: u(t, x) = f(x− 5 t);

t

x

(d) Characteristic lines: x = −4 t+ c; general solution: u(t, x) = e−tf(x+ 4 t);

t

x

2.2.4. u(t, x) = t+ e−(x−2 t)2 .

♦ 2.2.6. By the chain rule
∂v

∂t
(t, x) =

∂u

∂t
(t− t0, x) ,

∂v

∂x
(t, x) =

∂u

∂x
(t− t0, x) ,

and hence
∂v

∂t
(t, x) + c

∂v

∂x
(t, x) =

∂u

∂t
(t− t0, x) + c

∂u

∂x
(t− t0, x) = 0.

Moreover, v(t0, x) = u(0, x) = f(x). Q.E.D.

2.2.9. (a) |u(t, x) | = | f(x− ct) | e−at ≤M e−at → 0 as t→ ∞ since a > 0.

(b) For example, if c ≥ a, then the solution u(t, x) = e(c−a)t−x 6−→ 0 as t→ ∞.

♥ 2.2.11. (a) u(t, x) =
1

t+ h(x− t)
, where h(ξ) is an arbitrary C1 function.

(b) The solution to the initial value problem is

u(t, x) =
f(x− t)

1 + t f(x− t)
.

If f(x) ≥ 0, then the denominator does not vanish for t ≥ 0, and hence the solution ex-

ists for t > 0. Moreover, for fixed t > 0, the function g(y) =
y

1 + ty
is strictly increasing

for y ≥ 0. Therefore, 0 ≤ u(t, x) ≤ M

1 +M t
−→ 0 as t→ ∞.

(c) Using the preceding solution formula, if f(x) < 0, then, at the point x⋆ = x − 1/f(x),
the solution u(t, x⋆) → −∞ as t→ τ = −1/f(x).

(d) If m = min f(x) < 0, then, by part (c), the minimal blow-up time is τ⋆ = −1/m.
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Chapter 2: Selected Solutions 5

2.2.14. (a) u(t, x) =

{
f(x− ct), x ≥ c t,

g(t− x/c), x ≤ c t,
defines a classical C1 solution provided the

compatibility conditions g(0) = f(0), g′(0) = −c f(0), hold.
(b) The initial condition affects the solution for x ≥ c t, whereas the boundary condition

affects the solution for x ≤ c t. Apart from the compatibility condition along the charac-
teristic line x = ct, they do not affect each other.

2.2.17. (a) u(t, x) =
1

(xet)2 + 1
=

e−2 t

x2 + e−2 t
.

(b)

t = 0: t = 1:

t = 2: t = 3:

(c) The limit is discontinuous: lim
t→∞

u(t, x) =

{
1, x = 0,

0, otherwise.

2.2.18. (a) lim
t→∞

u(t, x) =





0, x < −1,

f(−1), x = −1,

f(1), x > −1.

2.2.20. (a) The characteristic curves are given by x = tan(t+ k) for k ∈ R.

t

x
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